• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute of Engineering Thermodynamics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät

Institute of Engineering Thermodynamics

Navigation Navigation close
  • Institute
    • Staff
    • Job offers
    • News
    • Directions
    Portal Institute
  • Research
    • Workgroups
      • Applied Spectroscopy
      • Particle Measurement
      • Combustion Technology and Reactive Flows
    • Publications
    • Dissertations
    Portal Research
  • Teaching
    • Courses
      • Thermodynamik und Wärmeübertragung
      • Technische Thermodynamik I für CBI und CEN
      • Technische Thermodynamik für MB, MT und BPT
      • Technische Thermodynamik (Vertiefung) für CBI und CEN
      • Wärme- und Stoffübertragung für ET, MB und CE
      • Renewable Thermal Power Plants
      • Clean Combustion Technology
      • Optical Diagnostics in Energy and Process Engineering
      • Angewandte Thermofluiddynamik (Fahrzeugantriebe) für CBI, MB und ET
      • Transportprozesse
      • Praktikum Messtechnik
    • Theses and HiWi jobs
    • Exam dates
    Portal Teaching

Institute of Engineering Thermodynamics

  1. Home
  2. Research
  3. Workgroups
  4. Particle Measurement
  5. Research Focus
  6. Characterization of nanoparticles in emulsions using broadband light scattering

Characterization of nanoparticles in emulsions using broadband light scattering

In page navigation: Research
  • Workgroups
    • Applied Spectroscopy
    • Combustion Technology and Reactive Flows
    • Equipment
    • Exemplary results
    • Particle Measurement
      • Equipment
      • Research Focus
        • Characterization of nanoparticles in emulsions using broadband light scattering
        • Characterization of Nanoparticles with Wide-Angle Light Scattering
        • EU Marie-Curie Innovative Training Network "IPPAD", Project 1
        • Investigation of Growth and Kinetics of Gas Hydrates by Optical Detection
        • Measurement of Aggregate Morphology with Two-Dimensional Multi-Angle Light Scattering
        • Optical Investigation of Flame Spray Pyrolysis
        • Particle sampling from high-temperature processes and image analysis
        • Size Determination of Nanoparticles by Laser-Induced Incandescence
        • Tomographic Methods for the Investigation of Particle Formation in Combustion Processes
    • Projects
  • Publications
  • Dissertations

Characterization of nanoparticles in emulsions using broadband light scattering

In a variety of industrial and scientific applications, the production of particles in the liquid phase by means of (melt) emulsification plays an important role, for example in the production of powders for additive manufacturing or for pharmaceutical applications. In the latter, for example, the release rate of the active ingredient can be influenced by the specific surface area of the particles and can thus be specifically adjusted by the particle size distribution. Autonomous control methods are to be developed and used to set a desired particle size distribution and thus improve production processes. For these purposes, however, online and real-time capable in-situ measurement techniques in the process are essential.

To this end, a novel light scattering technique based on elastic light scattering is developed in the working group Particle Measurement. Compared to existing techniques such as laser diffraction, which usually requires a sample to be taken or passed through a bypass, the new approach is based on broadband light scattering and detection in the backward scattering direction. In particular, this allows in situ determination of particle size distributions during melt emulsification without a bypass for particles in the sub-micrometer range. In addition to the fundamental development of the technique, the focus is in particular on the adaptation to higher particle concentrations.

Lehrstuhl für Technische Thermodynamik
Am Weichselgarten 8
91058 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up