• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Institute of Engineering Thermodynamics
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
Suche öffnen
  • en
  • de
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät

Institute of Engineering Thermodynamics

Navigation Navigation close
  • Institute
    • Staff
    • Job offers
    • News
    • Directions
    Portal Institute
  • Research
    • Workgroups
      • Applied Spectroscopy
      • Particle Measurement
      • Combustion Technology and Reactive Flows
    • Publications
    • Dissertations
    Portal Research
  • Teaching
    • Courses
      • Thermodynamik und Wärmeübertragung
      • Technische Thermodynamik I für CBI und CEN
      • Technische Thermodynamik für MB, MT und BPT
      • Technische Thermodynamik (Vertiefung) für CBI und CEN
      • Wärme- und Stoffübertragung für ET, MB und CE
      • Renewable Thermal Power Plants
      • Clean Combustion Technology
      • Optical Diagnostics in Energy and Process Engineering
      • Angewandte Thermofluiddynamik (Fahrzeugantriebe) für CBI, MB und ET
      • Transportprozesse
      • Praktikum Messtechnik
    • Theses and HiWi jobs
    • Exam dates
    Portal Teaching

Institute of Engineering Thermodynamics

  1. Home
  2. Research
  3. Workgroups
  4. Particle Measurement
  5. Research Focus
  6. Investigation of Growth and Kinetics of Gas Hydrates by Optical Detection

Investigation of Growth and Kinetics of Gas Hydrates by Optical Detection

In page navigation: Research
  • Workgroups
    • Applied Spectroscopy
    • Combustion Technology and Reactive Flows
    • Equipment
    • Exemplary results
    • Particle Measurement
      • Equipment
      • Research Focus
        • Characterization of nanoparticles in emulsions using broadband light scattering
        • Characterization of Nanoparticles with Wide-Angle Light Scattering
        • EU Marie-Curie Innovative Training Network "IPPAD", Project 1
        • Investigation of Growth and Kinetics of Gas Hydrates by Optical Detection
        • Measurement of Aggregate Morphology with Two-Dimensional Multi-Angle Light Scattering
        • Optical Investigation of Flame Spray Pyrolysis
        • Particle sampling from high-temperature processes and image analysis
        • Size Determination of Nanoparticles by Laser-Induced Incandescence
        • Tomographic Methods for the Investigation of Particle Formation in Combustion Processes
    • Projects
  • Publications
  • Dissertations

Investigation of Growth and Kinetics of Gas Hydrates by Optical Detection

In this research topic we want to investigate the formation of gas hydrates from the volume phase and the growth of cavities in an early stage by Elastic Light Scattering. To that end the transmitted light and the angular dependent scattered light is detected. The high pressure measurement cell exhibits an optical access of 180°, allowing for the detection of scattering signals from 15° to 165°.
In contrast to other groups, which mainly analyze the formation of gas hydrates starting from interfaces or by addition of additives, the focus in this project is on the formation from the volume phase, a single-phase water-CO2-mixture under quasi stationary conditions. This allows for the investigation of specific conditions and early stages of formation processes. The time dependent detection of optical signals under different measurement angles provides information about the size distribution and kinetics of gas hydrate formation and growth. The measurement setup comprises various high pressure components and can be operated up to 700 bars.

The capability of hydrate formation of water-CO2-mixtures with different concentrations under varying pressure and temperature can by analyzed with this technique. By simultaneous detection of pressure and optical signals differences in the sensitivity of the techniques can be determined.

Gas hydrates
Gas hydrate cell with optical detection
Lehrstuhl für Technische Thermodynamik
Am Weichselgarten 8
91058 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up